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QUASI TWO-DIMENSIONAL FLOW THROUGH A SUPERSONIC CASCADE
Joseph Jehl(l)

ABSTRACT. A theoretical scheme in which the influence of
the transverse stream contraction in a compressor or turbine
cascade on the supersonic flow crossing this cascade is taken
into account. The numerical method developed in this theoretical
scheme may also be adapted to the case of a flow variation in
the stream.

I. Introduction [137%

The strong compression ratios in supersonic compressors lead to'thevgdappégjéki
 of non-cylindrical external contours of these machines. The analysis of the

flow in these blade grills, which is performed by making a cylindrical cut of

the rotor and developing it onto a plane, must take into account the radial
component of velocity. The importance of this term increases as the stream
convergence increases and also increases with theradialgradiantof the enthalpy.,
The classical two~dimensional method of‘stuinnglr supersonic flows in blade

~ grills ceases to héve validity. However, the three—~dimensional calculation

of the flow in all its generality would make it.neceésary to use methods which
“would be too difficult to be of any practical use. This is why we are

presenting here an approximate quasi-two-~dimensional method which is analogous

to those studied by Shaalon and Horloék [1] and by Mani and Acosta.[2] for the
case of subsonic blade grills where the effects of the lateral stream con<
traction, variation of the axial velocity components and variations of theA ﬁléégi

total yield are represented by a flow-model having a constant cross section.

- - -
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The calculation presented here was programmed on an IBM 360~50 computer.

II. Definition of the Problem

*II.1. Three-~dimensional Flow in a Supersonic Blade Grill
The three-dimensional effect in a blade grill can be due to the following:

a) In a smooth wind-tunnel with supersonic blade grills the progressive
thickening of the boundary layers along the lateral side of the tunnel reduces
the cross section available for passage of the undisturbed flow. In a flow
having a cross section, this effect can be represented by parietal injection
of fluids;

b) In a cross section of a compressor, a radialdisplacement of the
stream surfaces brings about a radial gradient of the yield. An average value
of this gradient can be obtained by means of the condition of conservation
of the global yield of the machine and a condition of radial equilibrium of the
stream at the output of the grill.

We will only study the first case here, butvthe generalization of the

calculations to the study of a compressor cross section will not 'emcounter |

with any difficulty.

II.2. Quasi-Two-Dimensional Flow in a Supersonic Cascade.

Let us congider the motion of a perfect fluid in a constant cross section.
Due to the fact that the lateral walls are parallel, equations of motiomn

are written:
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where (u, v) are average values of the velocity components, normal and
parallel to the front of the cascade, respectively, taken at the transverse
height h of the channel. P and p are the average corresponding pressure and
volume mass density, respectively, and the coordinate system (x, y) is defined
in such a way that the Oy axis coincides with the front of the cascade and

the Ox axis is parallel to the incoming velocity (Figure 1).

The equation of mass conservation is written as:
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_where Wb is the transverse velocity component of the velocity defined along
the wall.

Since the flow is isoenergetic and the fluid is a perfect one, the flow
is irrotational and a is the local sound velocity (a0 is the corresponding
velocity at rest). The components (u, v) of the velocity are related

by the relationships:

oy oy h
! du v B 3
dy ox :

- This generalizes the classical equations of two-dimensional motion of a compres-

sible fluid through the case of a flow with parietal injection of fluid.

II.3. Equations for the Characteristics of the Quasi-Two-Dimensional Motion

When the flow under consideration is supersonic (isoentropic flow is assumed

with no shock waves and quasi-isoentropic flows is assumed when the shock waves




form in the interior of the fluids), two characteristics pass through each /139
point of the physical plane (x, y). One characteristic is an ascending
characteristic (I) and the other is a descending characteristic (II). The
corresponding characteristics in the hodograph plane are related to them and

are satisfled in equations:’
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1
where M = (u2 + v2)§7a is the local Mach number,® = arc tg (v/u) is the angle
between the velocity and the axial direction, y is the isoentropic constant of

the gas and MP = wp/a is a velocity coefficient which takes into account the

1 ,
parietal injection (strictly speaking, Mb must be defined with respect to
the local sound velocity, but within the framework of the simplifying
assumptions used here, the velocity of sound a; at ' the cascade input can be

replaced by a and leads to a constant parameter).

II.4. Boundary Conditions

I1.4.1. At the cascade input.

We only consider operation in the supersonic range [3], and the periodicity
of the flow, i.e., the condition of "unique incidence” [4], determines the
conditions at the cascade input. In the examples presented below the top phase
of the profile of the ‘cascade consists of a rectilinear part im the vicinity
of the top phase and in such a way that the flow &gkuniform in the input plane

of the cascade.
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Figure 1. Longitudinal and transverse

cross sections through a supersonic
cascade.
a) Longitudinal cut - AA.
b) Transverse cut -~ BB.
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Figure 2. Determination of thelggngipg
point.
a) Physical plane
b) Hodograph plane
IT.4.2. Along the profile.

Since the profile geometry is

" -known, the condition that the velocity

is parallel to the tangent to the wall
defines the angle .0 between the velocity

:and the normal and the front of the

‘ecascade.

IT.4.3. Through a shock wave.

Since the shock wave thickness is

infinitly small, the correspondence

‘relationships established in the two-

dimensionsal theory [5], for shock

waves remain in effect.

P 1 =1
\eo= 9 e —n * 2

e} - (5)
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where Ml and M2 are the Mach numbers ahead and downstream . of the shock wave .
¢ is the angle between the shock and the incident flow,  is the angle of

flow deflection through the shock. In the ' remainder of the calculations we
will only be interested in the solution for which the flow remains supersonic

after the shock wave (weak shock) which can be translated into the condition

III. Method of Integration

III.1 Running Point

The numerical integration methods for supersonic flow equations [6] can
be generalized in the case considered here. Thus, in order to determine the
coordinates of the point (3) located at the intersection of the characteristics
(I) ~emanating from (1l),and (II) emdnating from (2) (Figure 2), the equations
for (4) can be written in the form of finite increments. The following

relationships are obtained in the physical plane:
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- In the hodograph plane these relationships are:
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The correspondence between the parameters a, B, §, g, and Al

and final values of the parameters M and 6 is given in table I:

and the initial




TABLE 1 An interation calculation is

necessary in order to determine the

6:" - M:.. i 0;..’"' °»-c—VM:..—‘ ' | coordinates and the vélocity com~

M, g 08" O =1 ... |'" ponents at (3) from the points (1) (2).
o - M., cos ‘:"-""‘ Ot My, =1, o : This iteration calculation is term-

M, q €03" O =1 ' inated when an accuracy criterion is

2+ (r— M,

Ry g ==
2|/m: —1

Eu.q = an-q Ml-l "
B, = cos 0y, VM =1+ sino,, III.2 Point of Intersection with a

satisfied.

1 ~ i
.., 08 6, VM:" — 1 3in Oy Solid Wall.
Ay = ﬂh! ,
My = M.+2 Mq "As an example, let us present
Opq = 0-42' L] the equations which govern the encount-

—— ' er of a characteristic (I) with a
‘ wall having an angle w with the axis
0x. The point ({3) c;orresponding"tp?
intersection of the characteristic
(I) emanating from point (1) (Figure 3) with the wall can be determined

by means of the equation:

o Ya—x;tg m/—- (ri =331

1 Xy = 8{,3—39(;) J | , ]

S yy = 314(7 f‘z‘gj”) —(n—30)tge (8)
l, Sm—-tg’w ;

:’ 03 =w

[ My =M=y, (0,—0,)—4, é‘{l": (x—x)

and the same kind of interations as those used fc}ﬁr the determination of the

running point.

III.3. Point Located in the Center of an Expansion Bundle (Prandtl-Meyer

When the wall has a break Sw an ekpansion fan emanates from this point,




which from a mathematical point of view behaves like a multiple point. An
infinite number of characteristics of one of the families emanates -from this
point. The numerical method utilized separates this bundle into k discrete
waves which each correspond to a deviation

50 udl
=% (9)

of the flow. These characteristics are given by the equations:

M—M; = F (10)

'I—k-

depending on whether they originate along the lower or upper wall. The indices

i and j have the definition indicated in Figure 4.

i
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Figure 3. Intersection of a character- TFigure 4. Point located in an ex—
istic with a wall. pansion bundle.

a) Physical plane
b) hodograph plane




IV. Shock Waves /141
Just as in any supersonic motion, shock waves can appear in the flow.
A different calculation can be carried out depending on whether we are dealing

with a point at which the shock originates or running point along the shock.

IV.1. Point of Origination of a Shock Wave

Here we will only consider the case where due to the sharp variation in
the slope of one wall of the assembly,so as to reduce the cross section of
the channel,a shock wave appears in the fluid (Figure 5). The method we will

use is the one developed by P. Diringer and P. Laval.

Equations (6) and (7) are used to determine the K conditions for K at
the angular point of the wall. The correspondence Equations (5) without a
shock wave areused to determine the conditions K* downstream of a shock for

a deflection V.

IV.2. Running Point along the Shock Wave

The calculation of a running point along a shock wave requires ,interpo;'
lations as well as the iterations mentioned above. This is because the shock
wave does not pass through the nodes of the "gtéd of characteristics. The
principle of calculations is adapted from [6]. This entails determining
the point along the nth characteristics of family II from the variables

given along the ( n - l)th' characteristics of the same family (Figure 6).

The calculation isAstraightforward up to the point Jn. First, the point is on
the same characteristiéwilﬁnibbated at the intersection point of the family
I characteristic emanating from point K;_l » It 1is located at the upstream

edge of the shock wave at its intersection point with IIn—l' The conditions
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Figure 5. Conditions at the beginning Figure 6. Determinat$on of the pre-

point of a shock wave. sent point K (K -,K ) of the shock
n'n X
wave at the | intersection
a) Physical plane with the characteristic IInn

b) Hodograph plane

at K;_ are obtained by linear interpelation between J_ and L;'° The
conditions along the upstream shock wave front Kn+ are derived in the same
way from the characteristics emanating from an appropriate point Ln—l of the
downstream part of the IIn-l characteristic. The point is correctly chosen

if the conditions K;.and Kh+:correspond to the relationships (5).

1
determined along the characteristic IIn-l , due the fact that the wall is

The calculation is slightly complicated if the point Ln— can not be

too close. It is then necessary to introduce an interpolatipﬁu-characteristic

1]
II_,.

wave is chosen so that after reflection from the wall at Ln—

Its point of origination along the downstream edge of the shock
> o )

1 @ family I

- characteristic is produced which passes through Kh+ (Figure 7). This

. calculation is applied in the vicinity of the point of origination of the

shock wave.
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Figure 7. Determination of the present point
K (K ~, K¥) of the shock wave in the vicinity

non
of its initial point.

V. Cascade with Plane Plates

The most simple application of the preceding calculations is the application
to a cascade with plane plates. We studied the one~dimensional flow with a
transverse velocity component as an example in order to protect the program.
Physically, such a flow corresponds to the case of a cascade having normal
flat plates along the front of the cascade. There is also a lateral thicken-
ing of the boundary layer (Figure 8a), A two-dimensional representation
consists of a uniform flow in which infinitesimally thin flat plates are
inserted without incidence (Figure 8b). The thickening of the boundary layer
along the lateral walls is represented by a constant normal velocity in the

plane of the cascade.

The equations of motion (3) can be reduced to the following if there is

no vertical component v:
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plane plates parallel to the wind.

Figure 8b. Cross section of the cascade
with plane plates by plane normal to
the cascade.

The dintegral of this equation can be written as:

i
| Wy X a,

du W
: 2 ) — —a? P w0
; g (a u?) -
' -1
? a® = ag'—Y—— o (11)
: a2
025
(i | W, |
e » __!=
Pt 0% o
/,’ /"/’ vy < 020 L ’0. 007
- R Wo x G ) PR P glo—o-o-om—o-é;o‘
5..’_:,_{_,5 < ’
L2 el
- Ll 015
s 2l |
| P 00
% ;] g
. 005
upstream . . \15
- velocity - Ty 4
02 04 o6 08 1
b. reduced abscissa -%
Figure 8a. Diagram of a cascade with ) Figure 9. Comparison of the pres—

sure distribution along the upper
and lower surfaces of the plates

at the pressure calculated by

means of the one-dimensional method.
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constant is determined by the condition u

/142
z 1
vy—1
2
ao-l — 4 u (12)
' v + Conat.
4, .;'::—i—»ll
= ul for x = 0.




The pressure distribution derived from this one~dimensional calculation
was compared in Figure 9 to that obtained by means ofva two~dimensional
method for a Mach number of Ml = 1.8 at the inlet of the cascade. The follow~-
ing values of the parameter which determine the magnitude of the tramsverse

velocity were used |
rere used,

w .
—f =0;001 and 0,02
uy

(The index 1 refers to the inlet of the cascade). It can be seen in Figure 9
that the effect of transversewind is far from negligible as far as the pressure
distribution is concerned. However, in the case considered here, no blade 1lift

occurs.

VI. Cascade with a Double-Triangle Profile

In order to compare the predictions given by the calculations to experiment~
al results, the flow in a cascade having a double-triangle profile (Figure 1)
was analyzed. Complete experimental results are available for this cascade
[7]. This makes it possible to make a connection between theory and experi~-
ment. The construction data and experimental data of the cascade studied

are collected in Table II.

TABLE II

Study of supersonic, double~triangle blades.

Chord 60 mm
Step 30 mm
Leading edge angle of

attack 6°
Upper angle of twist 18°
Set angle 60°
Upstream Mach number 1.75
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Figure 10 shows the pressure variations of the upper and lower surfaces

for various magnitudes of the transverse wind:

W, T
— = —0,014; 0; - 0,010; 0,014; 0,020
uy

as well as the experimental points, recorded at mid-span. The substantial
influence of the lateral wind on the pressure distribution along the blades

is quite noticable. Since the experimental points lie essentially along

the curve corresponding to wb = (, it can be concluded that the mid~-span
cross section of the blade essentially behaves as though it were placed in a

two-dimensional flow.
VII. Conclusion

The method of characteristics developed for the study of two-dimensional
supersonic flows can be applied to the case of a motion having in addition
a transverse vélocity component, as is encountered in supersonic compressors
with a strong  convergence stream. In their particular case of tests of
supersonic .cascades, the calculation carried out made it possible to show that
the measurements carried out at mid-span of the blades correspond well with

plane flow. This means that the measured cross section is not influenced

by the interactiom of parietal boundary layers."
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